Implement Trie II (Prefix Tree)
Link
Description
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.
void insert(String word)
Inserts the string word into the trie.
int countWordsEqualTo(String word)
Returns the number of instances of the string word in the trie.
int countWordsStartingWith(String prefix)
Returns the number of strings in the trie that have the string prefix as a prefix.
void erase(String word)
Erases the string word from the trie.
Example 1:
| ["Trie", "insert", "insert", "countWordsEqualTo", "countWordsStartingWith", "erase", "countWordsEqualTo", "countWordsStartingWith", "erase", "countWordsStartingWith"]
[[], ["apple"], ["apple"], ["apple"], ["app"], ["apple"], ["apple"], ["app"], ["apple"], ["app"]]
|
| [null, null, null, 2, 2, null, 1, 1, null, 0]
|
| Trie trie = new Trie();
trie.insert("apple"); // Inserts "apple".
trie.insert("apple"); // Inserts another "apple".
trie.countWordsEqualTo("apple"); // There are two instances of "apple" so return 2.
trie.countWordsStartingWith("app"); // "app" is a prefix of "apple" so return 2.
trie.erase("apple"); // Erases one "apple".
trie.countWordsEqualTo("apple"); // Now there is only one instance of "apple" so return 1.
trie.countWordsStartingWith("app"); // return 1
trie.erase("apple"); // Erases "apple". Now the trie is empty.
trie.countWordsStartingWith("app"); // return 0
|
Constraints:
1 <= word.length, prefix.length <= 2000
word
and prefix
consist only of lowercase English letters.
- At most
3 * 10^4
calls in total will be made to insert
, countWordsEqualTo
, countWordsStartingWith
, and erase
.
- It is guaranteed that for any function call to
erase
, the string word
will exist in the trie.
Solution
Original Solution
| struct TrieNode {
TrieNode* nexts[26];
int passing = 0;
int ending = 0;
~TrieNode() {
for (auto& node : nexts) {
delete node;
}
}
};
class Trie {
public:
TrieNode* root;
Trie() {
root = new TrieNode();
}
~Trie() {
delete root;
}
void insert(string word) {
TrieNode* node = root;
for (const char& ch : word) {
int index = ch - 'a';
if (!node->nexts[index]) {
node->nexts[index] = new TrieNode();
}
node = node->nexts[index];
node->passing++;
}
node->ending++;
}
int countWordsEqualTo(string word) {
TrieNode* node = root;
for (const char& ch : word) {
int index = ch - 'a';
if (!node->nexts[index]) {
return 0;
}
node = node->nexts[index];
}
return node->ending;
}
int countWordsStartingWith(string prefix) {
TrieNode* node = root;
for (const char& ch : prefix) {
int index = ch - 'a';
if (!node->nexts[index]) {
return 0;
}
node = node->nexts[index];
}
return node->passing;
}
void erase(string word) {
TrieNode *node = root;
for (const char& ch : word) {
int index = ch - 'a';
node = node->nexts[index];
node->passing--;
}
node->ending--;
}
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* int param_2 = obj->countWordsEqualTo(word);
* int param_3 = obj->countWordsStartingWith(prefix);
* obj->erase(word);
*/
|
Time and space complexity of each function:
- Constructor (
Trie()
):
- Time Complexity: \(O(1)\). The constructor only initializes the root, which takes constant time.
-
Space Complexity: \(O(1)\) for the allocation of the root node.
-
Insert (insert(string word)
):
- Time Complexity: \(O(L)\), where \(L\) is the length of the word being inserted. This is because it traverses the Trie for the length of the word.
-
Space Complexity: \(O(L)\) in the worst case when a new path is created for the entire length of the word. This accounts for the space used by the new nodes.
-
Count Words Equal To (countWordsEqualTo(string word)
):
- Time Complexity: \(O(L)\), where \(L\) is the length of the word. It traverses the Trie for the length of the word to find the ending count.
-
Space Complexity: \(O(1)\), as it only uses a pointer to traverse the nodes.
-
Count Words Starting With (countWordsStartingWith(string prefix)
):
- Time Complexity: \(O(P)\), where \(P\) is the length of the prefix. The method traverses the Trie for the length of the prefix.
-
Space Complexity: \(O(1)\), since it similarly uses a pointer for traversal.
-
Erase (erase(string word)
):
- Time Complexity: \(O(L)\), where \(L\) is the length of the word. It decreases the passing count while traversing the Trie.
- Space Complexity: \(O(1)\), as it utilizes a pointer to navigate the Trie.
More general way of writing erase
function:
| void erase(string word) {
if (countWordsEqualTo(word) <= 0) return; // unnecessary for this question
TrieNode *node = root;
for (const char& ch : word) {
int index = ch - 'a';
if (--node->nexts[index]->passing == 0) {
node->nexts[index] = nullptr;
delete node->nexts[index];
return;
}
node = node->nexts[index];
}
node->ending--;
}
|
Using Hash Map
| struct TrieNode {
unordered_map<char, TrieNode*> nexts;
int passing = 0;
int ending = 0;
~TrieNode() {
for (auto& pair : nexts) {
delete pair.second;
}
}
};
class Trie {
public:
TrieNode* root;
Trie() : root(new TrieNode()) {}
~Trie() {
delete root;
}
void insert(string word) {
auto node = root;
node->passing++;
for (const auto& ch : word) {
if (!node->nexts.count(ch)) {
node->nexts[ch] = new TrieNode();
}
node = node->nexts[ch];
node->passing++;
}
node->ending++;
}
int countWordsEqualTo(string word) {
auto node = root;
for (const auto& ch : word) {
if (!node->nexts.count(ch)) {
return 0;
}
node = node->nexts[ch];
}
return node->ending;
}
int countWordsStartingWith(string prefix) {
auto node = root;
for (const auto& ch : prefix) {
if (!node->nexts.count(ch)) {
return 0;
}
node = node->nexts[ch];
}
return node->passing;
}
void erase(string word) {
auto node = root;
node->passing--;
for (const auto& ch : word) {
node = node->nexts[ch];
node->passing--;
}
node->ending--;
}
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* int param_2 = obj->countWordsEqualTo(word);
* int param_3 = obj->countWordsStartingWith(prefix);
* obj->erase(word);
*/
|
Static Array Solution
| class Trie {
private:
const static int N = 31010;
int son[N][26] {0};
int passing[N] {0};
int ending[N] {0};
int cnt = 0;
public:
Trie() {
}
void insert(string word) {
int current = 0;
passing[current]++;
for (char& ch : word) {
int index = ch - 'a';
if (!son[current][index]) {
son[current][index] = ++cnt;
}
current = son[current][index];
passing[current]++;
}
ending[current]++;
}
int countWordsEqualTo(string word) {
int current = 0;
for (char& ch : word) {
int index = ch - 'a';
if (!son[current][index]) {
return 0;
}
current = son[current][index];
}
return ending[current];
}
int countWordsStartingWith(string prefix) {
int current = 0;
for (char& ch : prefix) {
int index = ch - 'a';
if (!son[current][index]) {
return 0;
}
current = son[current][index];
}
return passing[current];
}
void erase(string word) {
int current = 0;
passing[current]--;
for (char& ch : word) {
int index = ch - 'a';
current = son[current][index];
passing[current]--;
}
ending[current]--;
}
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* int param_2 = obj->countWordsEqualTo(word);
* int param_3 = obj->countWordsStartingWith(prefix);
* obj->erase(word);
*/
|