Search in a Binary Search Tree
Link
Description
You are given the root
of a binary search tree (BST) and an integer val
.
Find the node in the BST that the node's value equals val
and return the subtree rooted with that node. If such a node does not exist, return null
.
Example 1:
- Input:
root = [4,2,7,1,3], val = 2
- Output:
[2,1,3]
Example 2:
- Input:
root = [4,2,7,1,3], val = 5
- Output:
[]
Constraints:
- The number of nodes in the tree is in the range
[1, 5000]
.
1 <= Node.val <= 10^7
root
is a binary search tree.
1 <= val <= 10^7
Solution
Binary Search Tree is a binary tree where the key in each node:
- is greater than any key stored in the left sub-tree,
- and less than any key stored in the right sub-tree.
Recursive Solution
| /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (!root || root->val == val) return root;
if (root->val > val) return searchBST(root->left, val);
if (root->val < val) return searchBST(root->right, val);
return nullptr;
}
};
|
Another way of writing:
| class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (!root || root->val == val) return root;
TreeNode *res = nullptr;
if (root->val > val) res = searchBST(root->left, val);
if (root->val < val) res = searchBST(root->right, val);
return res;
}
};
|
- Time complexity (worst): \(O(n)\);
- Space complexity (worst): \(O(n)\) for recursion stack.
Iterative Solution
| class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
TreeNode* curr = root;
while (curr && curr->val != val) {
if (curr->val > val) curr = curr->left;
else curr = curr->right;
}
return curr;
}
};
|
- Time complexity (worst): \(O(n)\);
- Space complexity: \(O(1)\).