Non-decreasing Subsequences
Link
Description
Given an integer array nums
, return all the different possible non-decreasing subsequences of the given array with at least two elements. You may return the answer in any order.
Example 1:
- Input:
nums = [4,6,7,7]
- Output:
[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]
Example 2:
- Input:
nums = [4,4,3,2,1]
- Output:
[[4,4]]
Constraints:
1 <= nums.length <= 15
-100 <= nums[i] <= 100
Solution
| class Solution {
private:
vector<vector<int>> res;
vector<int> path;
void backtracking(vector<int> &nums, int startIndex) {
if (path.size() > 1) res.push_back(path);
unordered_set<int> used;
for (int i = startIndex; i < nums.size(); i++) {
if (used.find(nums[i]) != used.end()) continue;
if (!path.empty() && nums[i] < path.back()) continue;
used.insert(nums[i]);
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums, 0);
return res;
}
};
|
- Time complexity: \(O(n\times 2^n)\);
- Space complexity: \(O(n)\).
Optimized solution:
| class Solution {
private:
vector<vector<int>> res;
vector<int> path;
void backtracking(vector<int> &nums, int startIndex) {
if (path.size() > 1) res.push_back(path);
bool used[210] = {false};
for (int i = startIndex; i < nums.size(); i++) {
if (used[nums[i] + 100]) continue;
if (!path.empty() && nums[i] < path.back()) continue;
used[nums[i] + 100] = true;
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums, 0);
return res;
}
};
|