Combination Sum IV
Link
Description
Given an array of distinct integers nums
and a target integer target
, return the number of possible combinations that add up to target
.
The test cases are generated so that the answer can fit in a 32-bit integer.
Example 1:
- Input:
nums = [1,2,3], target = 4
- Output:
7
- Explanation:
| The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
|
Example 2:
- Input:
nums = [9], target = 3
- Output:
0
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 1000
- All the elements of
nums
are unique.
1 <= target <= 1000
Solution
See reference (Chinese).
| class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 1; i <= target; i++) {
for (int j = 0; j < nums.size(); j++) {
if (i >= nums[j] && dp[i] < INT_MAX - dp[i - nums[j]])
dp[i] += dp[i - nums[j]];
}
}
return dp[target];
}
};
|
Another way of writing:
| class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 1; i <= target; i++) {
for (int j = 0; j < nums.size(); j++) {
if (i >= nums[j])
dp[i] = (0LL + dp[i] + dp[i - nums[j]]) % INT_MAX;
}
}
return dp[target];
}
};
|