Find Peak Element
Link
Description
A peak element is an element that is strictly greater than its neighbors.
Given a 0-indexed integer array nums
, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
. In other words, an element is always considered to be strictly greater than a neighbor that is outside the array.
You must write an algorithm that runs in \(O(\log n)\) time.
Example 1:
- Input:
nums = [1,2,3,1]
- Output:
2
- Explanation:
3 is a peak element and your function should return the index number 2.
Example 2:
- Input:
nums = [1,2,1,3,5,6,4]
- Output:
5
- Explanation:
Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-2^31 <= nums[i] <= 2^31 - 1
nums[i] != nums[i + 1]
for all valid i
.
Solution
Way 1
| class Solution {
public:
int findPeakElement(vector<int>& nums) {
long l = -1, r = nums.size();
while (l + 1 < r) {
long mid = l + (r - l) / 2;
long midVal = (mid == 0) ? LONG_MIN : nums[mid - 1];
if (nums[mid] > midVal) l = mid;
else r = mid;
}
return l;
}
};
|
Way 2
| class Solution {
public:
int findPeakElement(vector<int>& nums) {
int l = -1, r = nums.size();
while (l + 1 < r) {
int mid = l + (r - l) / 2;
bool isGreaterLeft = (mid == 0) || (nums[mid] > nums[mid - 1]);
bool isGreaterRight = (mid == nums.size() - 1) || (nums[mid] > nums[mid + 1]);
if (isGreaterLeft && isGreaterRight) return mid;
else if (isGreaterLeft) l = mid;
else r = mid;
}
return l;
}
};
|
Better way of writing:
| class Solution {
public:
int findPeakElement(vector<int>& nums) {
int left = -1, right = nums.size() - 1; // interval: (-1, n - 1)
while (left + 1 < right) {
int mid = left + (right - left) / 2;
if (nums[mid] > nums[mid + 1]) right = mid;
else left = mid;
}
return right;
}
};
|
Way 3
| class Solution {
public:
int findPeakElement(vector<int>& nums) {
int l = 0, r = nums.size() - 1;
while (l < r) {
int mid = l + r >> 1;
if (nums[mid] > nums[mid + 1]) r = mid;
else l = mid + 1;
}
return r;
}
};
|