Path Sum
Link
Description
Given the root
of a binary tree and an integer targetSum
, return true
if the tree has a root-to-leaf path such that adding up all the values along the path equals targetSum
.
A leaf is a node with no children.
Example 1:
- Input:
root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
- Output:
true
- Explanation: The root-to-leaf path with the target sum is shown.
Example 2:
- Input:
root = [1,2,3], targetSum = 5
- Output:
false
- Explanation:
- There two root-to-leaf paths in the tree:
(1 --> 2)
: The sum is 3
.
(1 --> 3)
: The sum is 4
.
- There is no root-to-leaf path with
sum = 5
.
Example 3:
- Input:
root = [], targetSum = 0
- Output:
false
- Explanation: Since the tree is empty, there are no root-to-leaf paths.
Constraints:
- The number of nodes in the tree is in the range
[0, 5000]
.
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
Solution
Way 1 (Recursion)
| /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if (!root) return false;
if (!root->left && !root->right && targetSum == root->val) return true;
return hasPathSum(root->left, targetSum - root->val) || hasPathSum(root->right, targetSum - root->val);
}
};
|
- Time complexity: \(O(N)\), where \(N\) is the number of nodes in the tree;
- Space complexity: \(O(H)\), where \(H\) is the height of the tree (Worst: \(O(N)\); Best: \(O(\log N)\) ).
Way 2 (Pre-order)
| class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if (!root) return false;
stack<pair<TreeNode*, int>> stk;
stk.push(make_pair(root, root->val));
while (!stk.empty()) {
auto node = stk.top();
stk.pop();
if (!(node.first)->left && !(node.first)->right && targetSum == node.second) return true;
if ((node.first)->right)
stk.push(make_pair((node.first)->right, node.second + (node.first)->right->val));
if ((node.first)->left)
stk.push(make_pair((node.first)->left, node.second + (node.first)->left->val));
}
return false;
}
};
|
Way 3 (Level-order)
| class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if (!root) return false;
queue<pair<TreeNode*, int>> q;
q.push(make_pair(root, root->val));
while (!q.empty()) {
auto t = q.front();
q.pop();
if (!t.first->left && !t.first->right && t.second == targetSum) return true;
if (t.first->left) q.push(make_pair(t.first->left, t.first->left->val + t.second));
if (t.first->right) q.push(make_pair(t.first->right, t.first->right->val + t.second));
}
return false;
}
};
|
- Time complexity: \(O(N)\);
- Space complexity: \(O(N)\).