4 Sum
Link
Description
Given an array nums
of n
integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]]
such that:
0 <= a, b, c, d < n
a
, b
, c
, and d
are distinct.
nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example 1:
- Input:
nums = [1,0,-1,0,-2,2], target = 0
- Output:
[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
- Input:
nums = [2,2,2,2,2], target = 8
- Output:
[[2,2,2,2]]
Constraints:
1 <= nums.length <= 200
-10^9 <= nums[i] <= 10^9
-10^9 <= target <= 10^9
Solution
Double Pointer
| class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i++) {
// Pruning process (optional)
if (nums[i] > target && nums[i] >= 0) break;
if (i && nums[i] == nums[i - 1]) continue;
for (int j = i + 1; j < nums.size(); j++) {
// Pruning process (optional)
if (nums[i] + nums[j] > target && nums[i] + nums[j] >= 0) break;
if (j > i + 1 && nums[j] == nums[j - 1]) continue;
for (int k = j + 1, l = nums.size() - 1; k < l; k++) {
if (k > j + 1 && nums[k] == nums[k - 1]) continue;
// use long to avoid overflow
while (k < l && (long) nums[i] + nums[j] + nums[k] + nums[l] > target) l--;
if (k < l && (long) nums[i] + nums[j] + nums[k] + nums[l] == target)
res.push_back({nums[i], nums[j], nums[k], nums[l]});
}
}
}
return res;
}
};
|
Time complexity: \(O(n^3)\)