3 Sum
Link
Description
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
- Input:
nums = [-1,0,1,2,-1,-4]
- Output:
[[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
- The distinct triplets are
[-1,0,1] and [-1,-1,2].
- Notice that the order of the output and the order of the triplets does not matter.
Example 2:
- Input:
nums = [0,1,1]
- Output:
[]
Explanation: The only possible triplet does not sum up to 0.
Example 3:
- Input:
nums = [0,0,0]
- Output:
[[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-10^5 <= nums[i] <= 10^5
Solution
Double Pointer Starter Way
| class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i++) {
if (nums[i] > 0) return res;
// wrong! e.g. [-1, -1, 2]
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
//the correct way to remove duplicates
if (i > 0 && nums[i] == nums[i - 1]) continue;
int left = i + 1, right = nums.size() - 1;
while (left < right) {
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else {
res.push_back(vector<int>{nums[i], nums[left], nums[right]});
// remove duplicates
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
right--;
left++;
}
}
}
return res;
}
};
|
Time complexity: \(O(n^2)\)
Double Pointer Simpler Way
| class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i++) {
if (i && nums[i] == nums[i - 1]) continue;
for (int j = i + 1, k = nums.size() - 1; j < k; j++) {
if (j > i + 1 && nums[j] == nums[j - 1]) continue;
while (j < k - 1 && nums[i] + nums[j] + nums[k - 1] >= 0) k--;
if (nums[i] + nums[j] + nums[k] == 0)
res.push_back({nums[i], nums[j], nums[k]});
}
}
return res;
}
};
|
Note: Why are we checking for nums[i] + nums[j] + nums[k-1] in the while loop, but nums[i] + nums[j] + nums[k] when adding the result? This is because in the while loop, if a k has been found that makes the sum of the three elements less than 0, then the next k (i.e., k-1) must make the sum of the three elements smaller (because nums[k-1] <= nums[k]). So, if nums[i] + nums[j] + nums[k-1] is still greater than or equal to 0, then we need to keep decreasing k. Then at the end of the while loop, since we may have missed the k that makes the sum of the three elements equal to 0, we finally check if nums[i] + nums[j] + nums[k] == 0 or not.
If we do not use k - 1 in that section, we can rewrite the code:
| class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i++) {
if (i && nums[i] == nums[i - 1]) continue;
for (int j = i + 1, k = nums.size() - 1; j < k; j++) {
if (j > i + 1 && nums[j] == nums[j - 1]) continue;
while (j < k && nums[i] + nums[j] + nums[k] > 0) k--;
// we need to check if j < k here!
if (j < k && nums[i] + nums[j] + nums[k] == 0)
res.push_back({nums[i], nums[j], nums[k]});
}
}
return res;
}
};
|