Skip to content

General Strategy of Iteration Methods⚓︎

We will discuss the general Splitting Strategy.

General Splitting Strategy⚓︎

For linear system \(\boldsymbol{Ax}=\boldsymbol{b}\), let \(\boldsymbol{A}=\boldsymbol{M}-\boldsymbol{N}\). Then:

\[ \boldsymbol{Ax}=\boldsymbol{b}\,\,\Longleftrightarrow \left( \boldsymbol{M}-\boldsymbol{N} \right) \boldsymbol{x}=\boldsymbol{b}\,\,\Longleftrightarrow \boldsymbol{Mx}=\boldsymbol{b}+\boldsymbol{Nx} \]

We can have the iteration:

\[ \boldsymbol{Mx}^{\left( k+1 \right)}=\boldsymbol{Nx}^{\left( k \right)}+\boldsymbol{b} \]

If \(\boldsymbol{M}\) is invertible, we have:

\[ \boldsymbol{x}^{\left( k+1 \right)}=\boldsymbol{M}^{-1}\boldsymbol{Nx}^{\left( k \right)}+\boldsymbol{M}^{-1}\boldsymbol{b} \]

Denote \(\boldsymbol{M}^{-1}\boldsymbol{b}=\boldsymbol{f}, \boldsymbol{M}^{-1}\boldsymbol{N}=\boldsymbol{G}\), we get:

\[ \boldsymbol{x}^{\left( k+1 \right)}=\boldsymbol{Gx}^{\left( k \right)}+\boldsymbol{f} \]

where \(\boldsymbol{G}\) is called iterative matrix.

For example, Jacobi method: \(\boldsymbol{M}=\boldsymbol{D}, \boldsymbol{N}=\boldsymbol{E}+\boldsymbol{F}\).

Speed of Convergence⚓︎

Question: Is it convergent? If so, how fast?

If \(\boldsymbol{x}^*\) is a solution of \(\boldsymbol{Ax}=\boldsymbol{b}\), then:

\[ \boldsymbol{Ax}^*=\boldsymbol{b}\,\,\Longleftrightarrow \left( \boldsymbol{M}-\boldsymbol{N} \right) \boldsymbol{x}^*=\boldsymbol{b}\Longleftrightarrow \boldsymbol{Mx}^*=\boldsymbol{Nx}^*+\boldsymbol{b}; \]
\[ \boldsymbol{x}^*=\boldsymbol{M}^{-1}\boldsymbol{Nx}^*+\boldsymbol{M}^{-1}\boldsymbol{b}=\boldsymbol{Gx}^*+\boldsymbol{f}; \]
\[ \boldsymbol{x}^*=\boldsymbol{Gx}^*+\boldsymbol{f} \]

Therefore, \(\boldsymbol{x}^*\) is a fixed point of the iteration.

Note that \(\boldsymbol{x}^{\left( k+1 \right)}=\boldsymbol{Gx}^{\left( k \right)}+\boldsymbol{f}\), then:

\[ \boldsymbol{x}^{\left( k+1 \right)}-\boldsymbol{x}^*=\boldsymbol{G}\left( \boldsymbol{x}^{\left( k \right)}-\boldsymbol{x}^* \right) \]

Define \(\boldsymbol{e}^{\left( k \right)}=\boldsymbol{x}^{\left( k+1 \right)}-\boldsymbol{x}^*\). We get:

\[ \boldsymbol{e}^{\left( k+1 \right)}=\boldsymbol{Ge}^{\left( k \right)} \]

This is the error equation.

Method 1⚓︎

Question: Is \(\boldsymbol{e}^{\left( k \right)}\rightarrow 0\) as \(k\rightarrow +\infty\) ? If so, how fast?

Theorem: If the spectral radius \(\rho \left( \boldsymbol{G} \right) <1\), it implies that \((\mathbf{I}-\boldsymbol{G})\) is invertible and \(\boldsymbol{x}^{\left( k \right)}\rightarrow \boldsymbol{x}^*\).

The inverse is also true: If \(\boldsymbol{x}^{\left( k \right)}\) converges for any \(\boldsymbol{f}\) and \(\boldsymbol{x}^{(0)}\), then \(\rho \left( \boldsymbol{G} \right) <1\). (How to prove?)

Remarks: For an iterative method, if it is convergent:

  1. \(\boldsymbol{b}\) can be arbitrary;
  2. \(\boldsymbol{x}^{(0)}\) can be arbitrary;
  3. The method always converges to \(\boldsymbol{x}^*\).

Question: If \(\rho \left( \boldsymbol{G} \right) >1\), there exists an initial guess that \(\boldsymbol{x}^{(k)}\) does not converge. If \(\rho \left( \boldsymbol{G} \right) =1\), what happens?

Theorem: If \(\left\| \boldsymbol{G} \right\| <1\) (any matrix norm is fine), then \(\rho \left( \boldsymbol{G} \right) <1\).

Method 2⚓︎

Definition: A matrix \(\boldsymbol{A}\in \mathbb{R} ^{m\times m}\) is called (weakly) diagonally dominant if:

\[ \left| a_{ii} \right|\geqslant \sum_{\begin{array}{c} j=1\\ j\ne i\\ \end{array}}^m{\left| a_{ij} \right|}; i=1,2,\cdots ,m \]

and is called (strongly) diagonally dominant if:

\[ \left| a_{ii} \right|>\sum_{\begin{array}{c} j=1\\ j\ne i\\ \end{array}}^m{\left| a_{ij} \right|}; i=1,2,\cdots ,m \]

Theorem: If \(\boldsymbol{A}\) is a strongly diagonally dominant matrix, then the associate Jacobi, Gauss-Seidel iterations converge for any \(\boldsymbol{x}^{(0)}\).

Theorem: If \(\boldsymbol{A}\) is symmetric with positive diagonal elements, and \(\omega \in \left( 0,2 \right)\), then SOR converges for any \(\boldsymbol{x}^{(0)}\) if and only if \(\boldsymbol{A}\) is positive definite.

Theorem(Gershgorin Theroem): Given \(\boldsymbol{A}\in \mathbb{R} ^{m\times m}\), the eigenvalues of \(\boldsymbol{A}\) are contained in the union of the following disks:

\[ D_i=\left\{ z\in \mathbb{C} \middle| \left| z-a_i \right|\leqslant \sum_{\begin{array}{c} j=1\\ j\ne i\\ \end{array}}^m{\left| a_{ij} \right|} \right\} ; i=1,2,\cdots ,m \]

Let:

\[ r_i=\sum_{\begin{array}{c} j=1\\ j\ne i\\ \end{array}}^m{\left| a_{ij} \right|} \]

We have:

\[ D_i=\left\{ z\in \mathbb{C} \middle| \left| z-a_i \right|\leqslant r_i \right\} ; i=1,2,\cdots ,m \]