Eigenvalue Problems⚓︎
Introduction to Eigenvalue Problems
Classical Eigenvalue Algorithms
Quick review
: Gram-Schmidt Process
If a vector group \(\boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_k\) is linearly independent, let:
\[
\boldsymbol{\beta }_1=\boldsymbol{\alpha }_1,
\]
\[
\boldsymbol{\beta }_2=\boldsymbol{\alpha }_2-\frac{\left( \boldsymbol{\alpha }_2,\boldsymbol{\beta }_1 \right)}{\left( \boldsymbol{\beta }_1,\boldsymbol{\beta }_1 \right)}\boldsymbol{\beta }_1,
\]
\[
\boldsymbol{\beta }_3=\boldsymbol{\alpha }_3-\frac{\left( \boldsymbol{\alpha }_3,\boldsymbol{\beta }_1 \right)}{\left( \boldsymbol{\beta }_1,\boldsymbol{\beta }_1 \right)}\boldsymbol{\beta }_1-\frac{\left( \boldsymbol{\alpha }_2,\boldsymbol{\beta }_2 \right)}{\left( \boldsymbol{\beta }_2,\boldsymbol{\beta }_2 \right)}\boldsymbol{\beta }_2,
\]
\[
\vdots
\]
\[
\boldsymbol{\beta }_k=\boldsymbol{\alpha }_k-\frac{\left( \boldsymbol{\alpha }_k,\boldsymbol{\beta }_1 \right)}{\left( \boldsymbol{\beta }_1,\boldsymbol{\beta }_1 \right)}\boldsymbol{\beta }_1-\frac{\left( \boldsymbol{\alpha }_k,\boldsymbol{\beta }_2 \right)}{\left( \boldsymbol{\beta }_2,\boldsymbol{\beta }_2 \right)}\boldsymbol{\beta }_2-\cdots -\frac{\left( \boldsymbol{\alpha }_k-\boldsymbol{\beta }_{k-1} \right)}{\left( \boldsymbol{\beta }_{k-1},\boldsymbol{\beta }_{k-1} \right)}\boldsymbol{\beta }_{k-1}
\]
Then \(\boldsymbol{\beta }_1,\boldsymbol{\beta }_2,\cdots ,\boldsymbol{\beta }_k\) are orthogonal to each other. Unitize them, we get:
\[
\boldsymbol{\gamma }_1=\frac{\boldsymbol{\beta }_1}{\left\| \boldsymbol{\beta }_1 \right\|},\boldsymbol{\gamma }_2=\frac{\boldsymbol{\beta }_2}{\left\| \boldsymbol{\beta }_2 \right\|},\cdots ,\boldsymbol{\gamma }_k=\frac{\boldsymbol{\beta }_k}{\left\| \boldsymbol{\beta }_k \right\|}
\]
The process from \(\boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_k\) to \(\boldsymbol{\gamma }_1,\boldsymbol{\gamma }_2,\cdots ,\boldsymbol{\gamma }_k\) is called Gram-Schmidt Orthogonalization. We can also get:
\[
\boldsymbol{A}=\left[ \begin{matrix}
\boldsymbol{\alpha }_1& \boldsymbol{\alpha }_2& \cdots& \boldsymbol{\alpha }_k\\
\end{matrix} \right]
\]
\[
=\left[ \begin{matrix}
\boldsymbol{\gamma }_1& \boldsymbol{\gamma }_2& \cdots& \boldsymbol{\gamma }_k\\
\end{matrix} \right]\cdot \left[ \begin{matrix}
\left\| \boldsymbol{\beta }_1 \right\|& \left( \boldsymbol{\alpha }_2,\boldsymbol{\gamma }_1 \right)& \cdots& \left( \boldsymbol{\alpha }_k,\boldsymbol{\gamma }_1 \right)\\
0& \left\| \boldsymbol{\beta }_2 \right\|& \cdots& \left( \boldsymbol{\alpha }_k,\boldsymbol{\gamma }_2 \right)\\
\vdots& \ddots& \ddots& \vdots\\
0& \cdots& 0& \left\| \boldsymbol{\beta }_k \right\|\\
\end{matrix} \right]
\]