Skip to content

Eigenvalue Problems⚓︎

Introduction to Eigenvalue Problems

QR Factorization

Classical Eigenvalue Algorithms

QR Algorithm

Divide and Conquer

SVD

Quick review: Gram-Schmidt Process

If a vector group \(\boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_k\) is linearly independent, let:

\[ \boldsymbol{\beta }_1=\boldsymbol{\alpha }_1, \]
\[ \boldsymbol{\beta }_2=\boldsymbol{\alpha }_2-\frac{\left( \boldsymbol{\alpha }_2,\boldsymbol{\beta }_1 \right)}{\left( \boldsymbol{\beta }_1,\boldsymbol{\beta }_1 \right)}\boldsymbol{\beta }_1, \]
\[ \boldsymbol{\beta }_3=\boldsymbol{\alpha }_3-\frac{\left( \boldsymbol{\alpha }_3,\boldsymbol{\beta }_1 \right)}{\left( \boldsymbol{\beta }_1,\boldsymbol{\beta }_1 \right)}\boldsymbol{\beta }_1-\frac{\left( \boldsymbol{\alpha }_2,\boldsymbol{\beta }_2 \right)}{\left( \boldsymbol{\beta }_2,\boldsymbol{\beta }_2 \right)}\boldsymbol{\beta }_2, \]
\[ \vdots \]
\[ \boldsymbol{\beta }_k=\boldsymbol{\alpha }_k-\frac{\left( \boldsymbol{\alpha }_k,\boldsymbol{\beta }_1 \right)}{\left( \boldsymbol{\beta }_1,\boldsymbol{\beta }_1 \right)}\boldsymbol{\beta }_1-\frac{\left( \boldsymbol{\alpha }_k,\boldsymbol{\beta }_2 \right)}{\left( \boldsymbol{\beta }_2,\boldsymbol{\beta }_2 \right)}\boldsymbol{\beta }_2-\cdots -\frac{\left( \boldsymbol{\alpha }_k-\boldsymbol{\beta }_{k-1} \right)}{\left( \boldsymbol{\beta }_{k-1},\boldsymbol{\beta }_{k-1} \right)}\boldsymbol{\beta }_{k-1} \]

Then \(\boldsymbol{\beta }_1,\boldsymbol{\beta }_2,\cdots ,\boldsymbol{\beta }_k\) are orthogonal to each other. Unitize them, we get:

\[ \boldsymbol{\gamma }_1=\frac{\boldsymbol{\beta }_1}{\left\| \boldsymbol{\beta }_1 \right\|},\boldsymbol{\gamma }_2=\frac{\boldsymbol{\beta }_2}{\left\| \boldsymbol{\beta }_2 \right\|},\cdots ,\boldsymbol{\gamma }_k=\frac{\boldsymbol{\beta }_k}{\left\| \boldsymbol{\beta }_k \right\|} \]

The process from \(\boldsymbol{\alpha }_1,\boldsymbol{\alpha }_2,\cdots ,\boldsymbol{\alpha }_k\) to \(\boldsymbol{\gamma }_1,\boldsymbol{\gamma }_2,\cdots ,\boldsymbol{\gamma }_k\) is called Gram-Schmidt Orthogonalization. We can also get:

\[ \boldsymbol{A}=\left[ \begin{matrix} \boldsymbol{\alpha }_1& \boldsymbol{\alpha }_2& \cdots& \boldsymbol{\alpha }_k\\ \end{matrix} \right] \]
\[ =\left[ \begin{matrix} \boldsymbol{\gamma }_1& \boldsymbol{\gamma }_2& \cdots& \boldsymbol{\gamma }_k\\ \end{matrix} \right]\cdot \left[ \begin{matrix} \left\| \boldsymbol{\beta }_1 \right\|& \left( \boldsymbol{\alpha }_2,\boldsymbol{\gamma }_1 \right)& \cdots& \left( \boldsymbol{\alpha }_k,\boldsymbol{\gamma }_1 \right)\\ 0& \left\| \boldsymbol{\beta }_2 \right\|& \cdots& \left( \boldsymbol{\alpha }_k,\boldsymbol{\gamma }_2 \right)\\ \vdots& \ddots& \ddots& \vdots\\ 0& \cdots& 0& \left\| \boldsymbol{\beta }_k \right\|\\ \end{matrix} \right] \]