Linear Algebra Review
Vector Norm
The range of vector norm is \(\boldsymbol{x}\in \mathbb{R} ^n, \left\| \boldsymbol{x} \right\| \in \mathbb{R} ^+\cup \left\{ \mathbf{0} \right\}\).
Some examples:
\(L^2\)-Norm:
\[
\left\| \boldsymbol{x} \right\| _2=\sqrt{\boldsymbol{x}^T\boldsymbol{x}}=\left< \boldsymbol{x},\boldsymbol{x} \right> ^{\frac{1}{2}}
\]
\(L^1\)-Norm:
\[
\left\| \boldsymbol{x} \right\| _1=\sum_{i=1}^n{\left| x_i \right|}
\]
\(L^\infty\)-Norm:
\[
\left\| \boldsymbol{x} \right\| _{\infty}=\max_{1\le i\le n} \left\| x_i \right\|
\]
\(L^p\)-Norm:
\[
\left\| \boldsymbol{x} \right\| _p=\left( \sum_{i=1}^n{\left| x_i \right|^p} \right) ^{\frac{1}{p}}, p\in \left[ 1,\infty \right)
\]
Weighted Norm: ( \(\boldsymbol{W}\) is a given matrix)
\[
\boldsymbol{W}=\left[ \begin{matrix}
w_1& \cdots& O\\
\vdots& \ddots& \vdots\\
O& \cdots& w_n\\
\end{matrix} \right] ,
\\
\left\| \boldsymbol{x} \right\| _{\boldsymbol{w}}=\left\| \boldsymbol{Wx} \right\| _2=\left( \sum_{i=1}^n{\left| w_ix_i \right|^2} \right) ^{\frac{1}{2}}
\]
Geometric Intuition:
Unit disk with different norms: \(\left\{ \boldsymbol{x}\in \mathbb{R} ^n|\left\| \boldsymbol{x} \right\| \le 1 \right\}\)
\(L^2\) is like a circle. \(L^1\) is like a diamond. \(L^\infty\) is like a square. \(L^p (1<p<2)\) is like the shape between circle and diamond. \(L^p (p>2)\) is like the shape between circle and square.
Matrix Norm
Two different ways to define the matrix norm for \(\boldsymbol{A}\in \mathbb{R} ^{m\times n}\):
Way 1: View matrix as a vector (reshape):
\[
\left\| \boldsymbol{A} \right\| _F=\left( \sum_{i=1}^m{\sum_{j=1}^n{\left| a_{ij} \right|^2}} \right) ^{\frac{1}{2}}
\]
Way 2: Induced Matrix Norm (preferred way to define the matrix norm)
\[
\boldsymbol{A}\in \mathbb{R} ^{m\times n}, \boldsymbol{A}:\mathbb{R} ^n\longmapsto \mathbb{R} ^m\,\,\left( \forall \boldsymbol{x}\in \mathbb{R} ^n, \boldsymbol{Ax}\in \mathbb{R} ^m \right)
\]
\[
\left\| \boldsymbol{A} \right\| _{\left( m,n \right)}=\mathop {\mathrm{sup}} \limits_{\left\| \boldsymbol{x} \right\| \ne 0}\frac{\left\| \boldsymbol{Ax} \right\| _v}{\left\| \boldsymbol{x} \right\| _v}
\]
Also:
\[
\left\| \boldsymbol{A} \right\| _{\left( m,n \right)}=\mathop {\mathrm{sup}} \limits_{\begin{array}{c}
\boldsymbol{x}\in \mathbb{R} ^n,\\
\left\| \boldsymbol{x} \right\| =1\\
\end{array}}\frac{\left\| \boldsymbol{Ax} \right\|}{\left\| \boldsymbol{x} \right\|}=\mathop {\mathrm{sup}} \limits_{\begin{array}{c}
\boldsymbol{x}\in \mathbb{R} ^n,\\
\left\| \boldsymbol{x} \right\| =1\\
\end{array}}\left\| \boldsymbol{Ax} \right\|
\]
Conclusion
:
If \(\left\| \boldsymbol{x} \right\| _1\) is taken:
\[
\boldsymbol{A}=\left[ \begin{matrix}
\boldsymbol{a}_1& \boldsymbol{a}_2& \cdots& \boldsymbol{a}_n\\
\end{matrix} \right] , \left\| \boldsymbol{A} \right\| _1=\max_{1\le j\le n} \left\| \boldsymbol{a}_j \right\| _1
\]
If \(\left\| \boldsymbol{x} \right\| _{\infty}\) is taken:
\[
\boldsymbol{A}=\left[ \begin{array}{c}
{\boldsymbol{a}_1}^*\\
{\boldsymbol{a}_2}^*\\
\vdots\\
{\boldsymbol{a}_m}^*\\
\end{array} \right] , \left\| \boldsymbol{A} \right\| _{\infty}=\max_{1\le i\le m} \left\| {\boldsymbol{a}_i}^* \right\| _1
\]
What about induced 2-norms? It turns out that we cannot find a formula for it!
The 2-norm(spectral norm) of a matrix \(\boldsymbol{A}\) is the largest singular value of \(\boldsymbol{A}\) (i.e., the square root of the largest eigenvalue of the matrix \(\boldsymbol{A}^{*}\boldsymbol{A}\), where \(\boldsymbol{A}^{*}\) denotes the conjugate transpose of \(\boldsymbol{A}\) ):
\[
\left\| \boldsymbol{A} \right\| _2=\sqrt{\lambda _{\max}\left( \boldsymbol{A}^*\boldsymbol{A} \right)}=\sigma _{\max}\left( \boldsymbol{A} \right)
\]
Spectral Radius
The Spectral Radius of a square matrix is the maximum of the absolute values of its eigenvalues.
Let \(\lambda _1,\lambda _2,\cdots ,\lambda _n\) be the eigenvalues of a matrix \(\boldsymbol{A}\in \mathbb{C} ^{n\times n}\). Then the spectral radius of \(\boldsymbol{A}\) is defined as:
\[
\rho \left( \boldsymbol{A} \right) =\max \left( \left| \lambda _1 \right|,\left| \lambda _2 \right|,\cdots ,\left| \lambda _n \right| \right)
\]
If \(\boldsymbol{A}\) satisfies \(\boldsymbol{AA}^*=\boldsymbol{A}^*\boldsymbol{A}\) (Normal Matrix), then:
\[
\rho \left( \boldsymbol{A} \right) =\left\| \boldsymbol{A} \right\| _2
\]