Skip to content

Linear Algebra Review⚓︎

Vector Norm⚓︎

The range of vector norm is \(\boldsymbol{x}\in \mathbb{R} ^n, \left\| \boldsymbol{x} \right\| \in \mathbb{R} ^+\cup \left\{ \mathbf{0} \right\}\).

Some examples:

\(L^2\)-Norm:

\[ \left\| \boldsymbol{x} \right\| _2=\sqrt{\boldsymbol{x}^T\boldsymbol{x}}=\left< \boldsymbol{x},\boldsymbol{x} \right> ^{\frac{1}{2}} \]

\(L^1\)-Norm:

\[ \left\| \boldsymbol{x} \right\| _1=\sum_{i=1}^n{\left| x_i \right|} \]

\(L^\infty\)-Norm:

\[ \left\| \boldsymbol{x} \right\| _{\infty}=\max_{1\le i\le n} \left\| x_i \right\| \]

\(L^p\)-Norm:

\[ \left\| \boldsymbol{x} \right\| _p=\left( \sum_{i=1}^n{\left| x_i \right|^p} \right) ^{\frac{1}{p}}, p\in \left[ 1,\infty \right) \]

Weighted Norm: ( \(\boldsymbol{W}\) is a given matrix)

\[ \boldsymbol{W}=\left[ \begin{matrix} w_1& \cdots& O\\ \vdots& \ddots& \vdots\\ O& \cdots& w_n\\ \end{matrix} \right] , \\ \left\| \boldsymbol{x} \right\| _{\boldsymbol{w}}=\left\| \boldsymbol{Wx} \right\| _2=\left( \sum_{i=1}^n{\left| w_ix_i \right|^2} \right) ^{\frac{1}{2}} \]

Geometric Intuition:

Unit disk with different norms: \(\left\{ \boldsymbol{x}\in \mathbb{R} ^n|\left\| \boldsymbol{x} \right\| \le 1 \right\}\)

\(L^2\) is like a circle. \(L^1\) is like a diamond. \(L^\infty\) is like a square. \(L^p (1<p<2)\) is like the shape between circle and diamond. \(L^p (p>2)\) is like the shape between circle and square.

Matrix Norm⚓︎

Two different ways to define the matrix norm for \(\boldsymbol{A}\in \mathbb{R} ^{m\times n}\):

Way 1: View matrix as a vector (reshape):

\[ \left\| \boldsymbol{A} \right\| _F=\left( \sum_{i=1}^m{\sum_{j=1}^n{\left| a_{ij} \right|^2}} \right) ^{\frac{1}{2}} \]

Way 2: Induced Matrix Norm (preferred way to define the matrix norm)

\[ \boldsymbol{A}\in \mathbb{R} ^{m\times n}, \boldsymbol{A}:\mathbb{R} ^n\longmapsto \mathbb{R} ^m\,\,\left( \forall \boldsymbol{x}\in \mathbb{R} ^n, \boldsymbol{Ax}\in \mathbb{R} ^m \right) \]
\[ \left\| \boldsymbol{A} \right\| _{\left( m,n \right)}=\mathop {\mathrm{sup}} \limits_{\left\| \boldsymbol{x} \right\| \ne 0}\frac{\left\| \boldsymbol{Ax} \right\| _v}{\left\| \boldsymbol{x} \right\| _v} \]

Also:

\[ \left\| \boldsymbol{A} \right\| _{\left( m,n \right)}=\mathop {\mathrm{sup}} \limits_{\begin{array}{c} \boldsymbol{x}\in \mathbb{R} ^n,\\ \left\| \boldsymbol{x} \right\| =1\\ \end{array}}\frac{\left\| \boldsymbol{Ax} \right\|}{\left\| \boldsymbol{x} \right\|}=\mathop {\mathrm{sup}} \limits_{\begin{array}{c} \boldsymbol{x}\in \mathbb{R} ^n,\\ \left\| \boldsymbol{x} \right\| =1\\ \end{array}}\left\| \boldsymbol{Ax} \right\| \]

Conclusion:

If \(\left\| \boldsymbol{x} \right\| _1\) is taken:

\[ \boldsymbol{A}=\left[ \begin{matrix} \boldsymbol{a}_1& \boldsymbol{a}_2& \cdots& \boldsymbol{a}_n\\ \end{matrix} \right] , \left\| \boldsymbol{A} \right\| _1=\max_{1\le j\le n} \left\| \boldsymbol{a}_j \right\| _1 \]

If \(\left\| \boldsymbol{x} \right\| _{\infty}\) is taken:

\[ \boldsymbol{A}=\left[ \begin{array}{c} {\boldsymbol{a}_1}^*\\ {\boldsymbol{a}_2}^*\\ \vdots\\ {\boldsymbol{a}_m}^*\\ \end{array} \right] , \left\| \boldsymbol{A} \right\| _{\infty}=\max_{1\le i\le m} \left\| {\boldsymbol{a}_i}^* \right\| _1 \]

What about induced 2-norms? It turns out that we cannot find a formula for it!

The 2-norm(spectral norm) of a matrix \(\boldsymbol{A}\) is the largest singular value of \(\boldsymbol{A}\) (i.e., the square root of the largest eigenvalue of the matrix \(\boldsymbol{A}^{*}\boldsymbol{A}\), where \(\boldsymbol{A}^{*}\) denotes the conjugate transpose of \(\boldsymbol{A}\) ):

\[ \left\| \boldsymbol{A} \right\| _2=\sqrt{\lambda _{\max}\left( \boldsymbol{A}^*\boldsymbol{A} \right)}=\sigma _{\max}\left( \boldsymbol{A} \right) \]

Spectral Radius⚓︎

The Spectral Radius of a square matrix is the maximum of the absolute values of its eigenvalues.

Let \(\lambda _1,\lambda _2,\cdots ,\lambda _n\) be the eigenvalues of a matrix \(\boldsymbol{A}\in \mathbb{C} ^{n\times n}\). Then the spectral radius of \(\boldsymbol{A}\) is defined as:

\[ \rho \left( \boldsymbol{A} \right) =\max \left( \left| \lambda _1 \right|,\left| \lambda _2 \right|,\cdots ,\left| \lambda _n \right| \right) \]

If \(\boldsymbol{A}\) satisfies \(\boldsymbol{AA}^*=\boldsymbol{A}^*\boldsymbol{A}\) (Normal Matrix), then:

\[ \rho \left( \boldsymbol{A} \right) =\left\| \boldsymbol{A} \right\| _2 \]